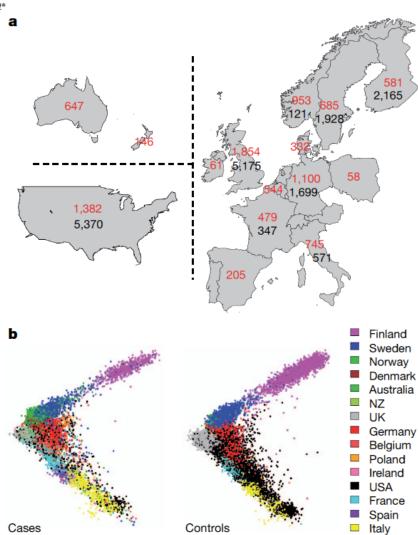
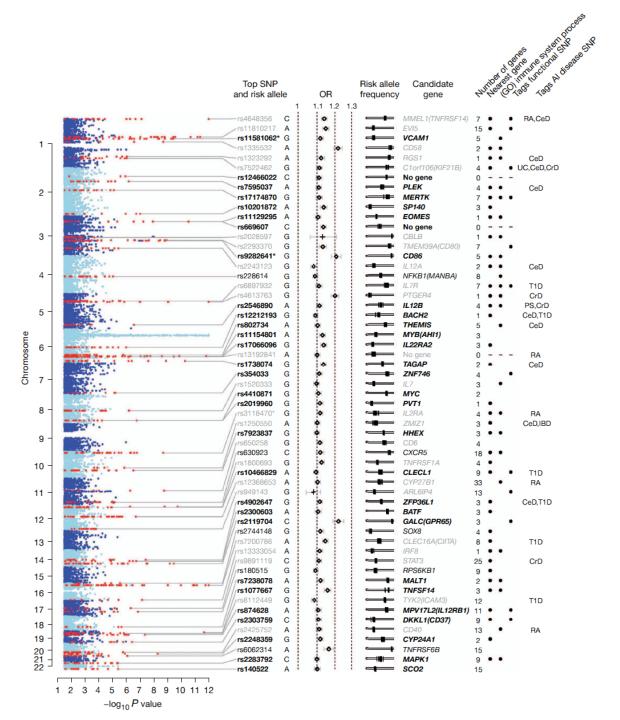


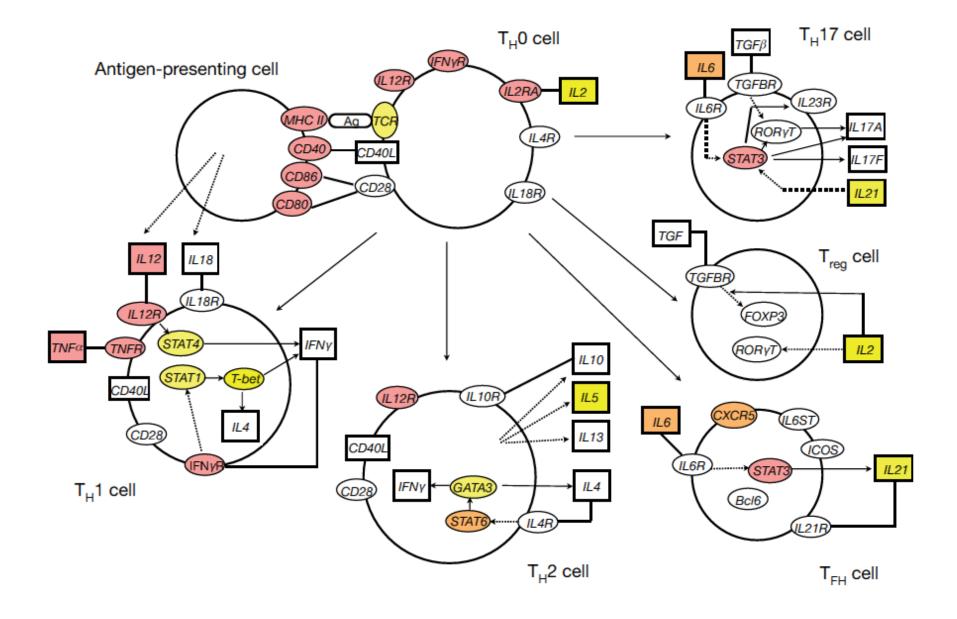

|                     | Population (thousands) | Incidence<br>(/10 <sup>5</sup> /year) | Incident<br>cases | Prevalence<br>(/10 <sup>5</sup> ) | Prevalent<br>cases |
|---------------------|------------------------|---------------------------------------|-------------------|-----------------------------------|--------------------|
| UK                  | 62 262.3               | 9.64                                  | 6003              | 203.4                             | 126 669            |
| England             | 52 233.9               | 9.08                                  | 4745              | 199.9                             | 104 451            |
| Wales               | 3006.3                 | 7.92                                  | 238               | 168.0                             | 5052               |
| Scotland            | 5222.3                 | 15.29                                 | 798               | 255.2                             | 13 328             |
| Northern<br>Ireland | 1799.8                 | 12.25                                 | 221               | 213.2                             | 383                |

Table 3 Crude and age-adjusted risks for first degree, half-siblings and adopted relatives

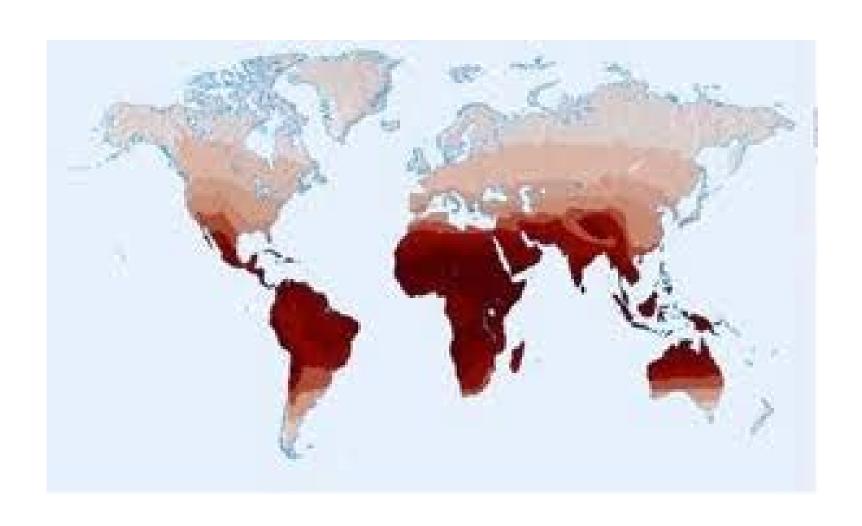
| Proband               | Female       |                      |                                      | Male         |                      |                                      | Total          |                      |                                      |
|-----------------------|--------------|----------------------|--------------------------------------|--------------|----------------------|--------------------------------------|----------------|----------------------|--------------------------------------|
| Relative              | n (affected) | Crude<br>risk<br>(%) | Age-adjusted<br>risk (%)<br>(95% CI) | n (affected) | Crude<br>risk<br>(%) | Age-adjusted<br>risk (%)<br>(95% CI) | n (affected)   | Crude<br>risk<br>(%) | Age-adjusted<br>risk (%)<br>(95% CI) |
| Monozygotic           |              |                      |                                      |              |                      |                                      | 78 (12)        | 15.38                | 17.26 (8.38-26.14)                   |
| Dizygotic             |              |                      |                                      |              |                      |                                      | 237 (4)        | 1.69                 | 1.92 (0.00-0.38)                     |
| Child                 |              |                      |                                      |              |                      |                                      | 43 078 (526)   | 1.22                 | 2.03 (1.86-2.20)                     |
| Daughter              | 14 206 (251) | 1.77                 | 2.96 (2.60-3.32)                     | 6737 (107)   | 1.59                 | 2.57 (2.09-3.05)                     | 20943 (358)    | 1.71                 | 2.83 (2.54-3.12)                     |
| Son                   | 15 003 (99)  | 0.66                 | 1.12 (0.90-1.34)                     | 7132 (69)    | 0.97                 | 1.55 (1.12-1.91)                     | 22 135 (168)   | 0.76                 | 1.26 (1.07-1.45)                     |
| Sibling               |              |                      |                                      |              |                      |                                      | 28 5 3 1 (652) | 2.29                 | 2.55 (2.09-3.01)                     |
| Sister                | 9537 (288)   | 3.02                 | 3.36 (2.98-3.74)                     | 4379 (136)   | 3.11                 | 3.43 (2.86-4.00)                     | 13 916 (424)   | 3.05                 | 3.38 (3.16-3.60)                     |
| Brother               | 10038 (136)  | 1.35                 | 1.52 (1.13-1.78)                     | 4577 (92)    | 2.01                 | 2.23 (1.77-2.69)                     | 14615 (228)    | 1.56                 | 1.74 (1.51-1.97)                     |
| Maternal half-sibling |              |                      |                                      |              |                      |                                      | 4359 (62)      | 1.42                 | 1.68 (1.26-2.10)                     |
| Sister                | 1382 (29)    | 2.10                 | 2.40 (1.26-2.94)                     | 681 (13)     | 1.91                 | 2.14 (0.96-3.32)                     | 2063 (42)      | 2.04                 | 2.46 (1.72-3.20)                     |
| Brother               | 1569 (12)    | 0.76                 | 0.95 (0.52-1.49)                     | 727 (8)      | 1.10                 | 1.31 (0.41-2.21)                     | 2296 (20)      | 0.87                 | 1.51 (0.96-2.06)                     |
| Paternal half-sibling |              |                      |                                      |              |                      |                                      | 4117 (44)      | 1.07                 | 1.40 (0.99-1.81)                     |
| Sister                | 1400 (16)    | 1.14                 | 1.54 (0.79-2.29)                     | 647 (10)     | 1.55                 | 2.01 (0.78-3.24)                     | 2047 (26)      | 1.27                 | 1.69 (0.99-1.81)                     |
| Brother               | 1468 (10)    | 0.68                 | 0.92 (0.35-1.49)                     | 662 (8)      | 1.21                 | 1.55 (0.05-2.62)                     | 2130 (18)      | 0.85                 | 1.12 (0.60-1.64)                     |
| Adopted child         |              |                      |                                      |              |                      |                                      | 497 (2)        | 0.4                  | 0.67 (0.00-1.58)                     |
| Adopted sibling       |              |                      |                                      |              |                      |                                      | 65 (1)         | 1.54                 | 1.76 (0.00-5.18)                     |
| Adoption              |              |                      |                                      |              |                      |                                      | 562 (3)        | 0.53                 | 0.84 (0.00-1.79)                     |


The age adjusted risks were calculated using Strömgren's unmodified method. The confidence intervals were estimated using the binomial distribution with the sum of the weights as the total sample size.




# Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis

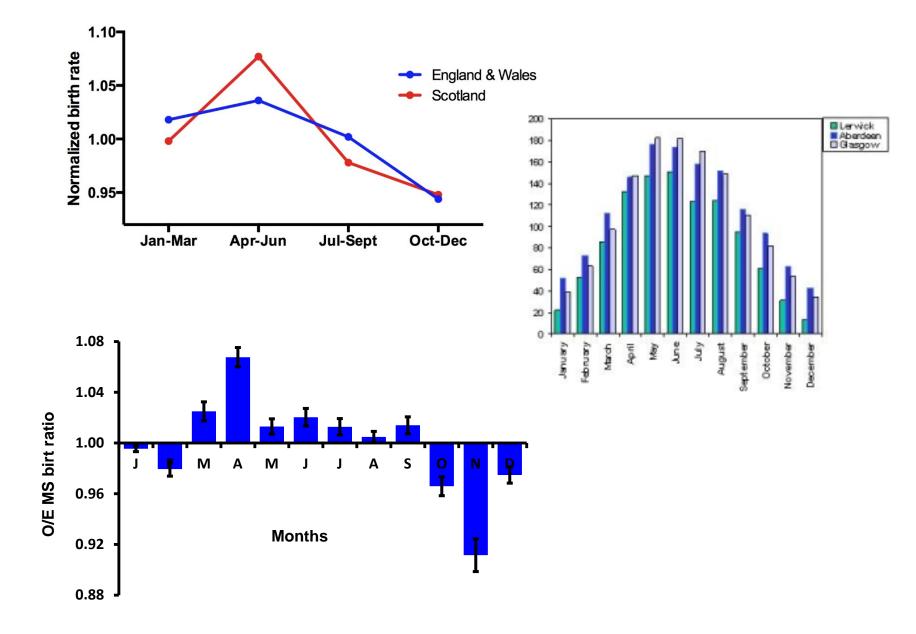

The International Multiple Sclerosis Genetics Consortium\* & the Wellcome Trust Case Control Consortium 2\*

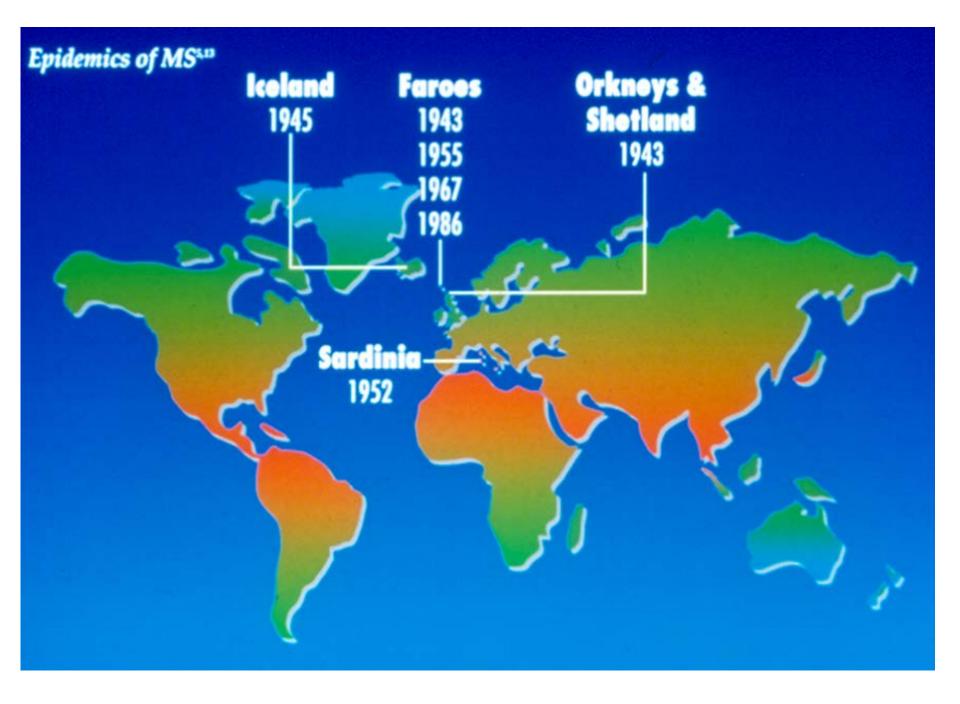






# **World Sunlight levels**

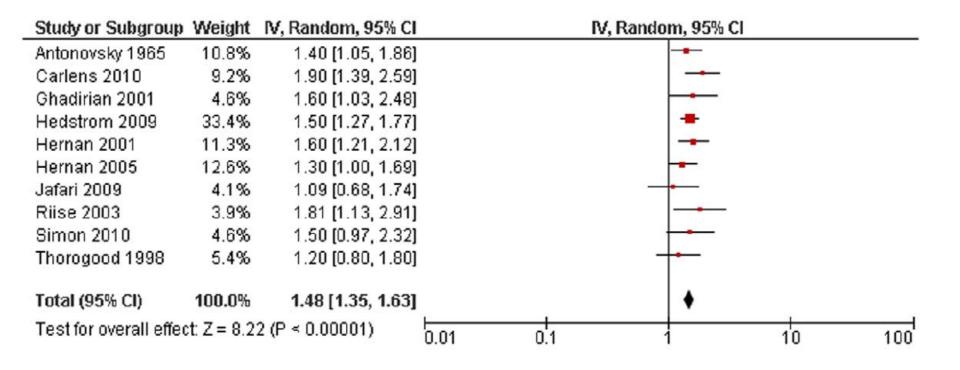




#### Vitamin D and MS

- Vitamin D deficiency and susceptibility to MS Prospective studies have shown that vitamin D deficiency prior to MS onset predisposes individuals to increased risk of MS (Munger et al., 2004; 2006); geography and sunlight
- Vitamin D levels and disease activity in RRMS For every 10ng/mL increase in baseline vitamin D level there was a 34% decrease in rate of subsequent relapse (Mowry et al., 2010).
- Vitamin D supplementation and disease activity in RRMS
- Vitamin D as an immunomodulator

## PreVANZ study

- 240 patients with CIS and MRI lesions
- 12 months FU to new lesions or new episode
- 4 groups 0, 1000, 5000, 10000 iu Vit D3/day
- Current recruitment 61






#### Summary of the evidence

- 1. Virtually all subjects with MS (>99%) are infected with EBV compared to only ~90% of control subjects.
- 2. MS is very rare in subjects who are not infected with EBV.
- 3. People with MS have an increased tendency to spontaneous in-vitro lymphocyte transformation in clinically active multiple sclerosis.
- 4. People who have had symptomatic EBV infection or glandular fever have a higher risk of developing MS compared to people who have not had glandular fever.
- 5. People with higher levels of antibodies to EBV have a higher risk of developing MS compared to subjects with low antibody levels.
- 6. A unusual cluster of MS in children attending a school in rural Denmark occurred shortly after an outbreak of glandular fever.
- 7. Oligoclonal antibodies in the spinal fluid of subjects with MS recognise EBV antigens.
- 8. Autoimmune T cells in the circulation of subjects with MS, which are capable of orchestrating an attack on myelin producing cells also recognise EBV.
- 9. Subjects with MS have a higher number of CD8+-T-cells cells that recognise EBV than controls subjects (proliferation and tetramer).
- 10. During an MS relapse there is preliminary evidence that EBV is actively replicating compared to subjects with stable MS.
- 11. Anti-CD20 therapy may work by suppressing peripheral EBV replication.

## Smoking and MS





# Impact of Multiple Scheross.

### **Objectives**

- 1) Understand impact of MS from patient perspective to provide indicators that can be used to improve services and treatments for people with MS.
- 2) Improve outcome measurement with application to improving clinical trial methodology.
- 3) Develop method to forecast future impact of MS with application to treatment-targeting.
- 4) Facilitate other research e.g. health economics, physiotherapist-led research; genetic markers.

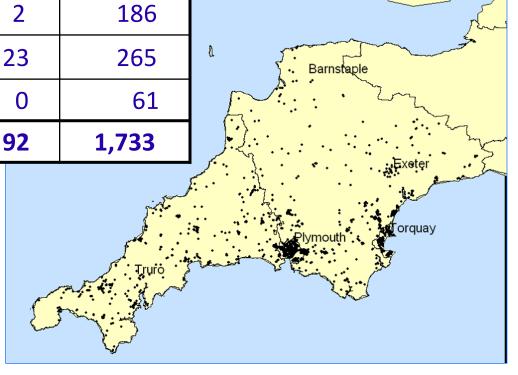


# MS Questionnaire Booklet

| Current Contents                          |                                                      | Baseline                                                                                                                    | 6-monthly | 12-monthly |  |
|-------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------|------------|--|
| Date of first symptom(s)                  |                                                      | ✓                                                                                                                           |           |            |  |
| Date of first visit to GP                 |                                                      | ✓                                                                                                                           |           |            |  |
| Date of diagnosis                         |                                                      | ✓                                                                                                                           |           |            |  |
| Type of MS                                |                                                      | ✓                                                                                                                           |           | ✓          |  |
| Investigations                            |                                                      | ✓                                                                                                                           | ✓         |            |  |
| MS relapses                               |                                                      | ✓                                                                                                                           | ✓         |            |  |
| Sym                                       | ptoms                                                | ✓                                                                                                                           | ✓         |            |  |
| Serv                                      | ice use                                              | <b>✓</b>                                                                                                                    | ✓         |            |  |
|                                           | lications                                            | <b>√</b>                                                                                                                    |           | ✓          |  |
| ⊢—                                        | eived deterioration of MS                            |                                                                                                                             | ✓         |            |  |
| Patie                                     | ent-Determined Disease Steps                         | ✓                                                                                                                           | ✓         |            |  |
| Patient-reported outcome measures (PROMs) |                                                      | After baseline participants are randomly allocated either version A or B , and receive alternate booklets every six months. |           |            |  |
|                                           | MS Impact Scale (MSIS-29) version 2                  | ✓                                                                                                                           |           | ✓          |  |
|                                           | MS Walking Scale (MSWS-12) version 2                 | ✓                                                                                                                           |           | ✓          |  |
| А                                         | Fatigue Severity Scale (FSS)                         | ✓                                                                                                                           |           | ✓          |  |
|                                           | General Health Questionnaire (GHQ-30)                | ✓                                                                                                                           |           | ✓          |  |
|                                           | EuroQol (EQ-5D)                                      | ✓                                                                                                                           |           | ✓          |  |
|                                           | Functional Assessment of MS (FAMS)                   | ✓                                                                                                                           |           | ✓          |  |
| В                                         | MS Neuropsychological Screening Questionnaire (MSNQ) | ✓                                                                                                                           |           | <b>√</b>   |  |
|                                           | Postal Barthel Index (PBI)                           | ✓                                                                                                                           |           | ✓          |  |
|                                           | Short-Form Medical Outcomes Survey (SF-36) version 2 | ✓                                                                                                                           |           | ✓          |  |



# Recruitment Aug 2004 to Aug 2015 inclusive


| Centre              | Num<br>recru |     | Total |
|---------------------|--------------|-----|-------|
|                     | MS#          | CIS |       |
| 01 Plymouth         | 859          | 48  | 907   |
| 02 Torbay           | 295          | 19  | 314   |
| 03 Exeter + N Devon | 184          | 2   | 186   |
| 04 Cornwall         | 242          | 23  | 265   |
| 05 N Devon          | 61           | 0   | 61    |
| TOTAL               | 1,641        | 92  | 1,733 |

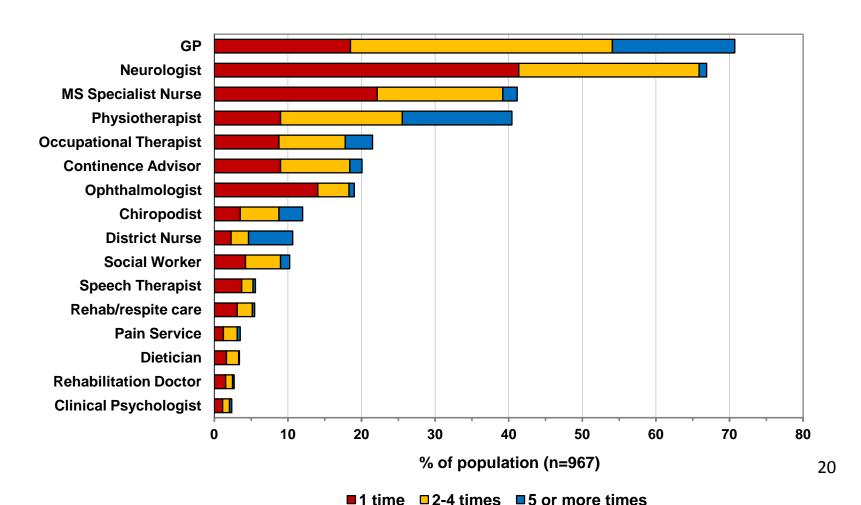


Response rate for Plymouth:

MS = 75%

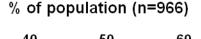
CIS = 88%

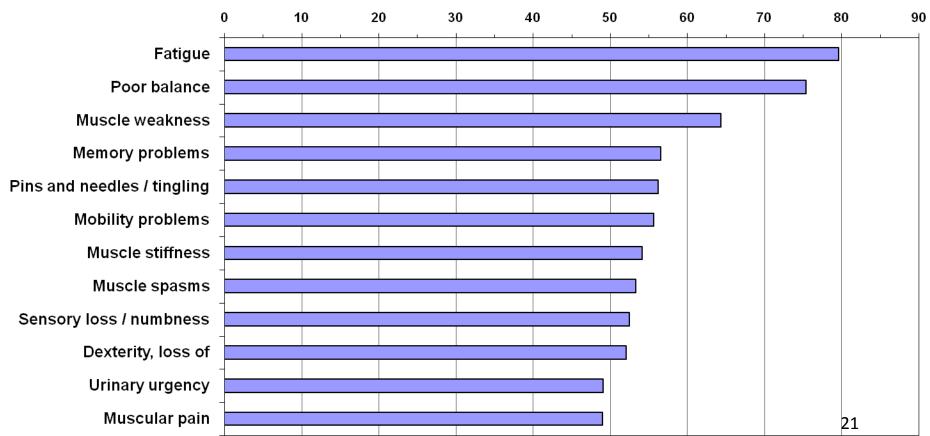



#### Relapses in last 12 months.



| Impact of relapse (n=835)                         | yes | %    |
|---------------------------------------------------|-----|------|
| Admitted to hospital                              | 93  | 11.1 |
| Treated with oral steroids                        | 130 | 15.6 |
| Treated with iv steroids                          | 112 | 13.4 |
| Limited everyday activities other than employment | 633 | 75.8 |
| Time off work                                     | 201 | 24.1 |


# How many times in last 12 months have you visited the following people for your MS?






# Symptoms experienced at baseline? (12 most commonly reported)







# Medications taken for MS at baseline or during previous 12 months

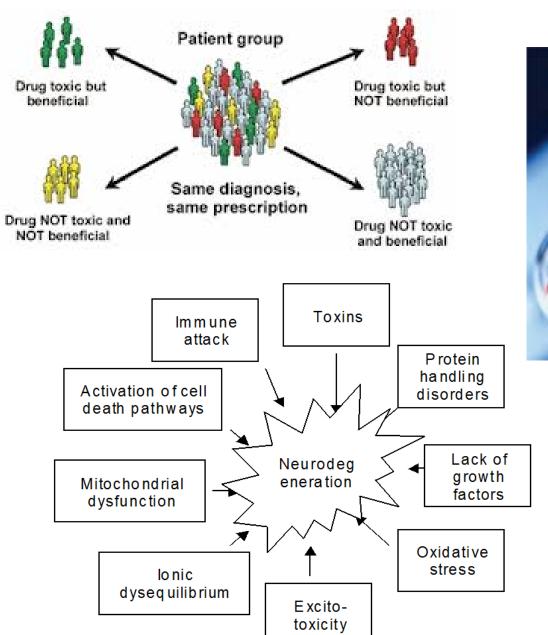


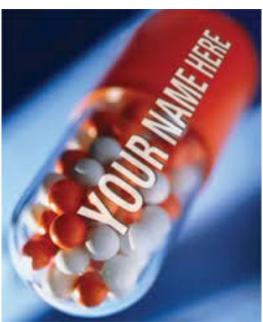
#### **Disease-modifying therapies (DMT)**

- Of 967 participants, 18.1% were currently, or had previously taken, a DMT.
  - Within the relapsing-remitting group, 31% were currently receiving, or previously received, a DMT.
  - The commonest DMTs in use were one of the forms of beta-interferon, and glatiramer acetate.

#### **Fatigue**

- Although 80% of the 967 participants experienced fatigue, only 3 people were taking amantadine or modafinil and were without fatigue.
- Fifty people taking amantadine or modafinil continued to have fatigue.




#### **Facilitate other research**

- Health economics
   Prof Colin Green, University of Exeter Medical School
- Physiotherapist-led
   Dr Jonathan Marsden, School of Health Professionals, UoP
   Jenny Freeman, School of Health Professions, UoP
- Genetics
   Prof DAS Compston, University of Cambridge
- Date of birth study
   Prof Jackie Palace, University of Oxford







## Opportunities in Scotland

- Population Registers (e.g. SMSR, SWIMS), CHI.
- Clinical Trials MS (incl. vit D, EBV)
- Data Linkage Farr Institute
- Collaborations (e.g. Future MS)
- Research as part of everyday clinical practice

## Issues with Registers

- Length of FU compared to length of disease
- Bias from incomplete ascertainment
- Effort collecting information may not be used
- Loss of inertia, drop-out
- Why?



#### **James Lind Alliance**

- 1. Which treatments are effective to slow, stop or reverse the accumulation of disability associated with MS?
- 2. How can MS be prevented?
- 3. Which treatments are effective for fatigue in people with MS?
- 4. How can people with MS be best supported to self-manage their condition?
- 5. Does early treatment with aggressive disease modifying drugs improve the prognosis for people with MS?
- 6. Is Vitamin D supplementation an effective disease modifying treatment for MS?
- 7. Which treatments are effective to improve mobility for people with MS?
- 8. Which treatments are effective to improve cognition in people with MS?
- 9. Which treatments are effective for pain in people with MS?
- 10. Is physiotherapy effective in reducing disability in people with MS?

